MMODA multi-messenger online data analysis platform in the frame of the EuroScienceGateway project

Denys Savchenko^{1,4}

Andrii Neronov^{1,2}, Cécile Cavet¹, Volodymyr Savchenko^{2,3}

- Astroparticule et Cosmologie CNRS/UPCité
 EPFL Laboratoire d'astrophysique
 Observatoire Astronomique de l'Úniversité de Genève
- BITP & KAU, Ukraine

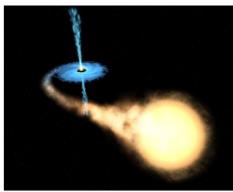
Multi-Messenger Time Domain Astronomy

Exploding field!

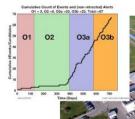
Last decade key **new observables** were discovered, and conventional telescopes dramatically upgraded to match.

Number of alerts and volume of data we deal with increased by couple orders of magnitude in the last years, and several nearly-ready telescopes promise another comparable increase

"Just" a star

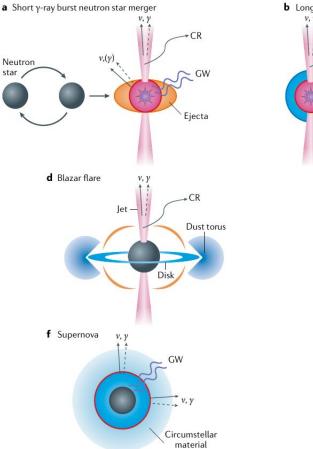


Visible



Star and black hole

Two neutron stars



Multi-Messenger data analysis

Only combining data together, it is possible to see a complete picture of physical phenomena in astronomical sources.

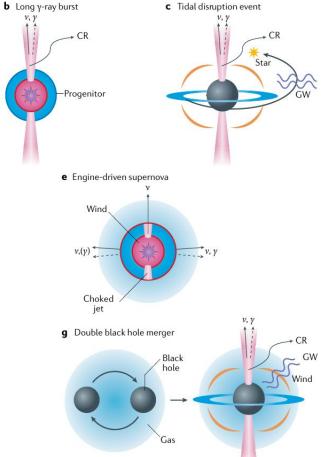
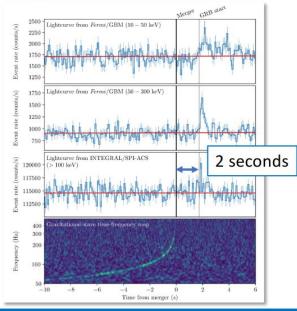
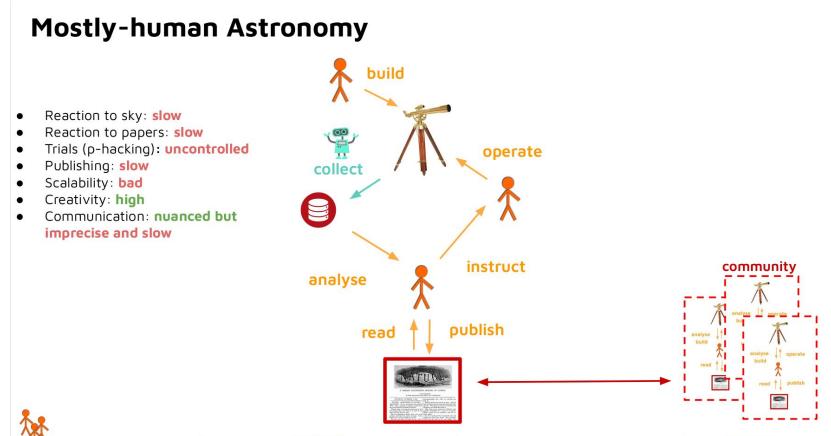



Fig: Meszaros et al. 2019


Multi-Messenger data analysis

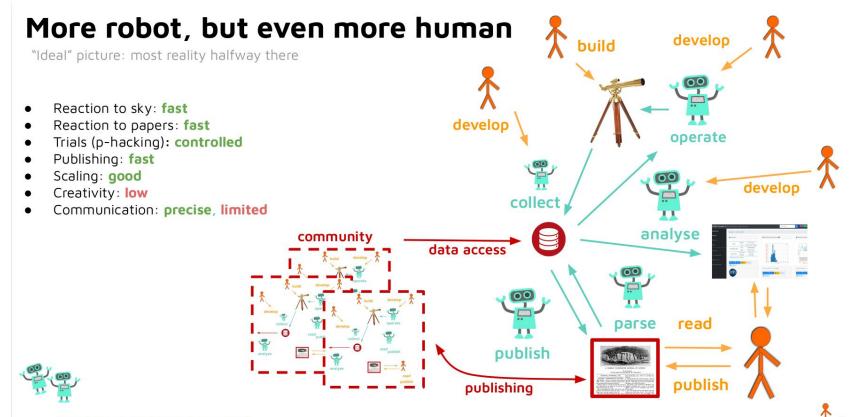
A wealth of astronomical sources emit over very broad energy range. Understanding of emission mechanisms requires astronomical data collected with many different types of telescopes.

Individual astronomers cannot master data analysis techniques of all these telescopes at once. A system that helps (guides) them to obtain analysis-ready results for multiple types of astronomical instruments, would be useful.


Example:

GW 170817 (a neutron star merger event).

A wealth of astronomical sources appears on the sky for a short period of time (down to milli- and microseconds in the case of "fast radio bursts"). Understanding of emission mechanisms requires "fast reaction", to observe the source with multiple telescopes, while it is "in action".


Individual astronomers cannot master all these telescopes at once. A system that helps coordinated observation campaigns and extracts data analysis results in automatic way would be useful.

When do we start

[^] Human reaction and processing is slow, even if it's within even one person. But people are smart

Evolution

- Making smart robots is hard: always lacking developers who are also research scientists.
- If all is automated, scientists have hard time seeing what's going on, since they do not speak robot
- Robots are fast, but lack creative reaction in new situations.

MMODA: a tool for exploring, transforming MM data

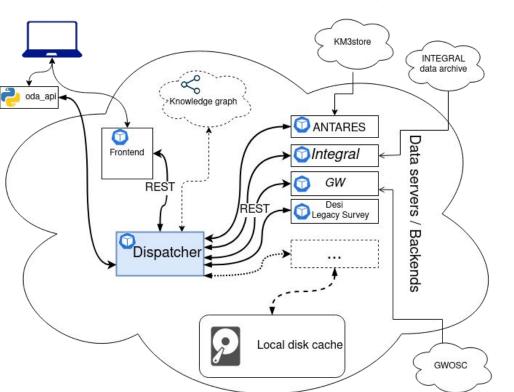
https://www.astro.unige.ch/mmoda/

	Object name *			Multi-Messenger Onli	ne Data Analysis	
	gw170817	Resolve				
	Name resolved by local resolver.	Dec *	EM-X INTEGRAL SP	Pl-ACS Polar Antares GW LegacySurvey		
	197.45035416666664	-23.3814841666666667		Source: query, 0.5 sec	[2022.05.31T14:07:31]	
	Start time * E	nd time * Time unit		Download		
	2017-08-17T12:40:59.400	2017-08-17T12:41:14.400 ISO/ISO7~		Start Time: 2017-08-17T12:40:59.400		
rument query parameters :			~	1.160e+5	•	
ument query parameters :		og Share • API code • * View on Renku •	~	1.160e.5 (6) (7) (7) (1.150e.5 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)		

Software layer

-- **API** access using dedicated python library

-- WEB-frontend


-- **dispatcher** coordinates data flow and job provisioning

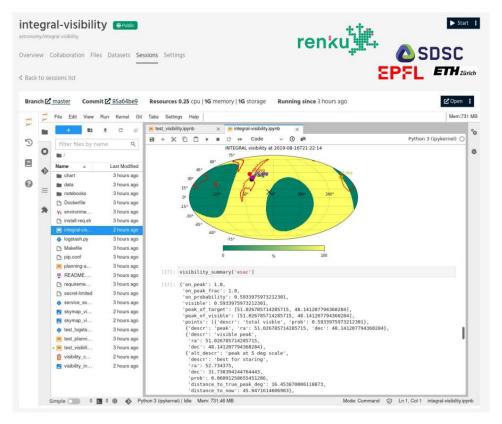
-- data products are cached for later use

-- raw data from external services/archives

provenance metadata in Knowledge Graph

Hard to build these tools, need expert astronomers with state-of-the-art tool-building skills self.

https://github.com/oda-hub

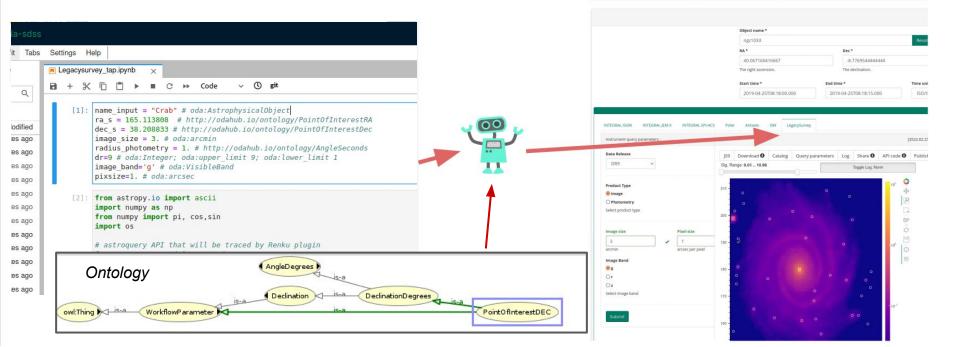

Development space: help scientists make robots

There are much **more scientists who can make a jupyter notebook than write organized code.**

JupyterHub(s), Google-collab, ESA DataLabs, Renku

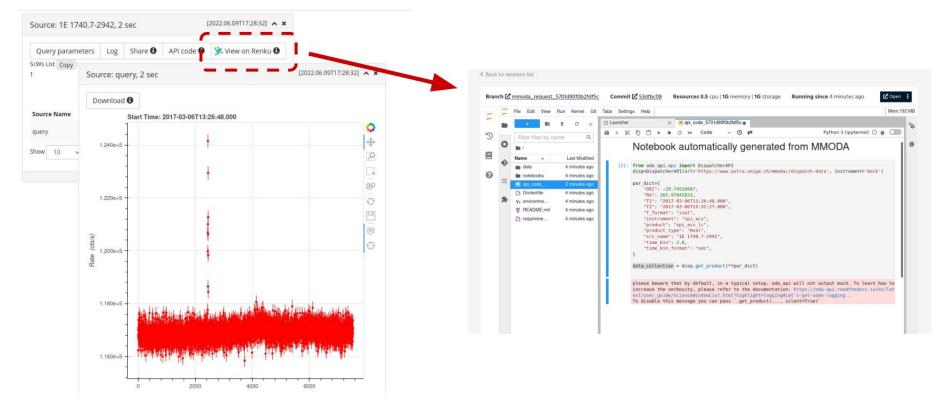
- Continuous integration and testing
- Supports in **publishing of data and code** (e.g. in zenodo)
- Support in **annotation** for scientists and robots reuse with ontology terms

This process creates a collection of notebooks and other workflows, but they are only really accessible interactively one-by-one

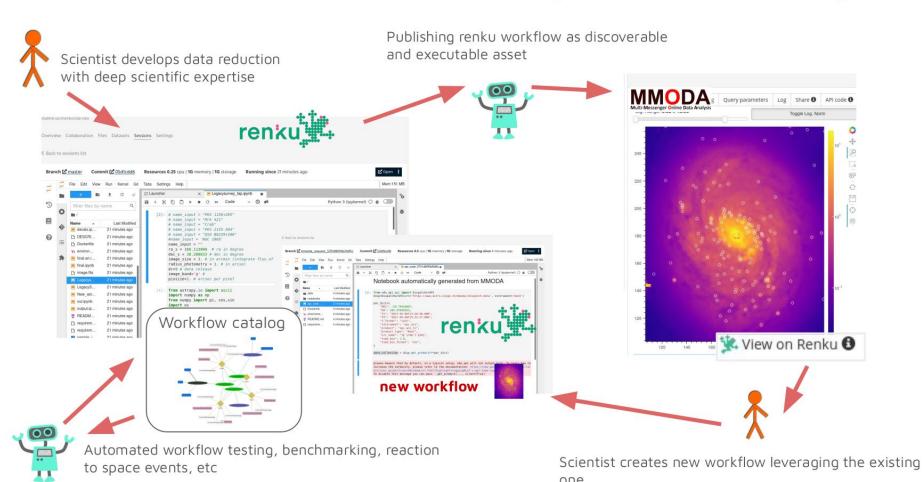

Making the developed workflow available as a web tool

jupyter may be easy, but sometimes we want just put parameters and click one button in web interface.

And even more so, we want to leverage workflow as a service, possibly calling from another workflow


MMODA

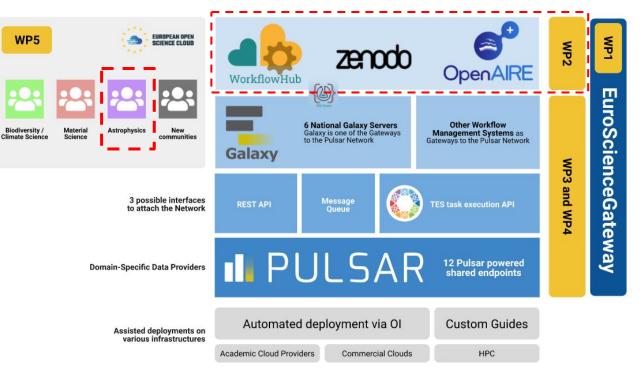
We are publishing the live tool, not just it's output



Helping to request MMODA services from Jupyter/Renku

Building new workflows by using results of the existing ones

Feedback loop for crowd-sourcing workflow catalog


EuroScienceGateway

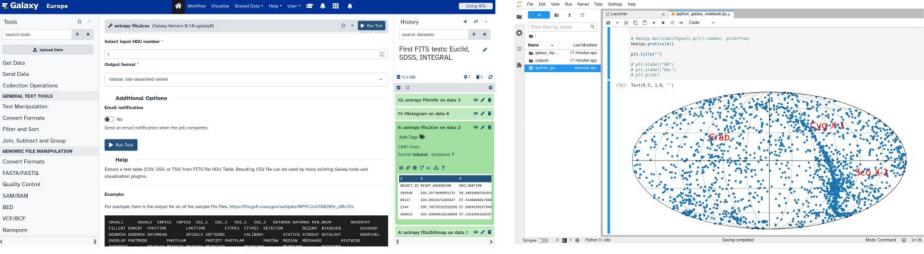
- 18 national and international institutions across 14 countries
- Lead by University of Freiburg (Germany)
- 3 years starting early 2023

EOSC project leveraging the European compute infrastructures for data-intensive research guided by FAIR principles

Key elements:

- "Galaxy" Web-based Science Platform
- Sustainable Compute
 and Storage network
- FAIR data and workflows: publishing and preservation
- Expanding communities

Galaxy data analysis platform

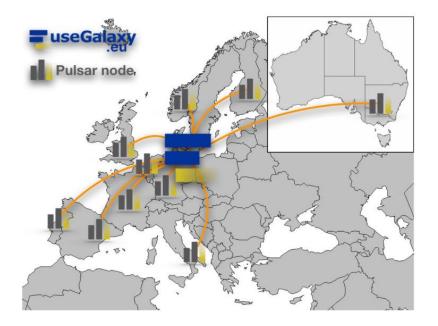

Grew out of bioinformatics needs, but reached **broad user community**: Life Sciences, Materials Science, Climate/Earth etc.

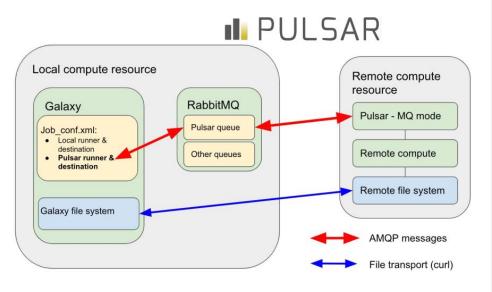
170 registered instances, dedicated well-developed training network

Very modular and customizable, data formats, visualization modules, job submission modules.

Explored wide variety of design patterns fit for different purposes

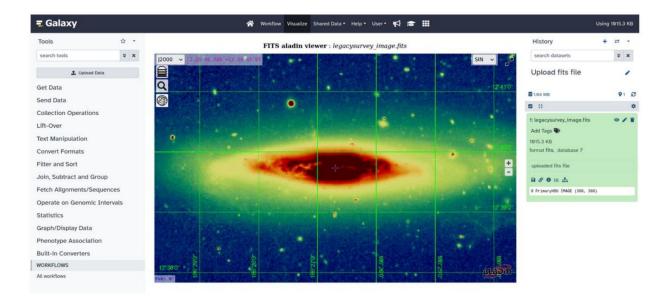
Unified User Interface




Interactive tools

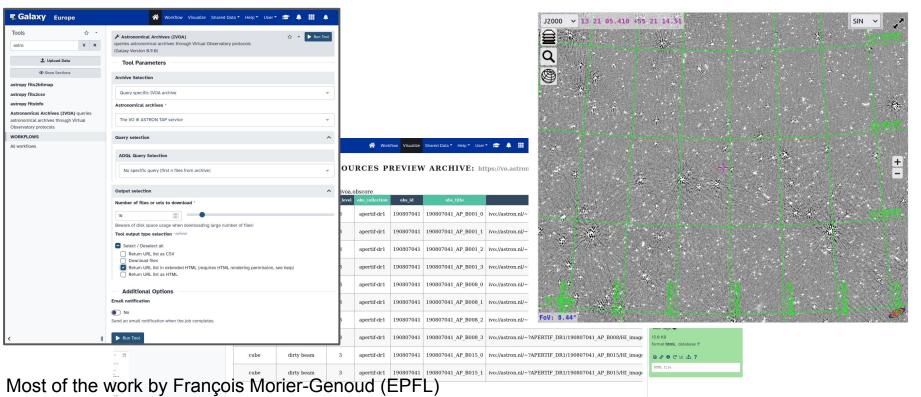
Pulsar distributed compute network

Pulsar services connected in a network enabling large computing network between **European** supercomputing centers


Bring Your Own Storage/Compute allows users to add their own resources to galaxy resource pool, ensuring **sustainable capacity**.

Galaxy Astronomy: FITS support, preview with AladinLite

Many common formats already supported. We extended Galaxy with **FITS** format: identification, parsing (astropy), and visualization (AladinLite).



Most of the work by François Morier-Genoud (EPFL)

Adding IVOA archives

Galaxy supports S3, webdav, pyfilesystem, etc.

We added first interface to query IVOA TAP archives from Galaxy (demo video).

Bringing our workflow catalogue into Galaxy platform

We are <u>developing</u> the nb2galaxy tool

The bot will convert our crowdsourced workflows in the form of python **notebooks to Galaxy tools** and add to the <u>toolshed</u> just like deploying them as a services in MMODA

from astropy.time import Time from oda_api.dats_products import LightCurveDataProduct, BinaryData, PictureProduct from mapletlib import pylab as plt In [3]: In [3]:			-		KIB 🗘 🖪 Edit 🗸
In [2]: import numpy as np from astropy.time import Time from oda_api.data_products import LightCurveDataProduct, BinaryData, PictureProduct from oda_api.data_products import DispatcherAPI disp=DispatcherAPI (url='https://www.astro.unige.ch/mmoda//dispatch-data', instrument='mock') par_dict=("T1": T1, "T_format: "isp1_acs", "product: "sp1_acs", "product: "sp1_acs", "product: "sp1_acs", "time_bin": lc_time_scale,					3-01-16T04:55:33.9" # http://odahub.io/ontology#EndTime time_scales = "1.10" cale = 0.1 # https://odahub.io/ontology#TimeIntervalSeconds d_age = 10 # oda:TimeIntervalSeconds
<pre>import numpy as np from astropy.time import Time from da_api.data_products import DispatcherAPI disp=DispatcherAPI disp=Di</pre>	Using 187.6 KE	🎇 Workflow Visuelize Data Libraries Admin Help- User- 📢 😎 🏭	mo	= Galaxy Configured by Plane	
from oda_api.data_products import LightCurveDataProduct, BinaryData, PictureProduct from matplotItb import pylab as plt In [3]: from oda_api.api import DispatcherAPI disp=DispatcherAPI dispetc	History + ≓ ·				
from matplotlib import pylab as plt in [3]: from oda_api.api import DispatcherAPI dispeDispatcherAPI(url='https://www.astro.unige.ch/mmoda//dispatch-data', instrument='mock') par_dict=("I1": TI, "T_romatt: "isot", "instrument: "spi_acs", "product": "spi_acs[c", "time_bin": lc_time_scale, "time_bin": lc_time_bin": lc_time_scale, "time_bin": lc_time_scale, "time_bin": lc_time_scale, "time_bin": lc_time_scale, "time_bin": lc_time_scale, "time_bin": lc_time_scale, "time_bin": lc_time_scale, "time_bin": lc_time_scale, "time_bin": lc_time_scale, "time_bin": lc_time_bin": lc_time_scale, "time_bin": lc_time_bin": lc_time_scale, "time_bin": lc_time_bin": lc_time_scale, "time_bin": lc_time_bin": lc_time_bin"	search datasets 🛛 🗙 🗙	.647281857408966, 'timescale': '10', 't_max_sn': '2023-01-16T04:54:38.900'}	{'sn': 10.	search tools 🛛 🕏 🗙	
In [3]: from oda_api.api import DispatcherAPI disp=DispatcherAPI (url='https://www.astro.unige.ch/mmoda//dispatch-data', instrument='mock') par_dict={ "11": T1, "72": T2, "1_format': "sol_acs", "product': "spi_acs", "product:: "spi_acs", "time_bin': Le_time_scale, "time_bin': Le_time_scale,	Unnamed history	1 s, S/N = 8.1	104000 -		
<pre>int l31: from oda_api.api import DispatcherAPI disp=DispatcherAPI(url='https://www.astro.unige.ch/mmoda//dispatch-data', instrument='mock') par_dict={ "T1": T1, "T2": T2, "instrument*: "spi_acs", "product": "spi_acs", "product": "spi_acs", "time_bin": Lc_time_scale, "time_bin": Lc_time_scale,</pre>	192 kB 🛛 🖗 3 🗑 6 🕯		102000	example	
disp=DispatcherAPI(url='https://www.astro.unige.ch/mmoda//dispatch-data'. instrument='mock') Al wollows par_dict={ "TI"; TI, "T_format": "isot", "Instrument": "spl_acs", "product": "spl_acs", "product": "spl_acs", "time_bin": 1c_time_scale, "time_bin					
"T2": T2. "T_format": "isot", "instrument": "spi_acs", "product_type": "Real", "time_bin": Lc_time_scale, "time_bin": Lc_time_bin": Lc_time_bin": Lc_time_bin": Lc_time_bin": Lc_time_bin": Lc_time_bin": Lc_time_bin": Lc_ti	: example -> image_output		in the		atcherAPI(url='https://www.astro.unige.ch/mmoda//dispatch-data', instrument='mock') (
"product_type": "Real". \$2000	>>> out_lc lc_galaxy.output outv >> coda_api.data_products.lightCurveDataProd object at 6x7fbc8a7b2ef6> {data_unit_list: a				T2. rmat": "isot", rument": "spi_acs",
Time MID	example -> Ic 💿 🖉 1	-40 -20 0 20 40			uct_type": "Real",
338 ST 101 MAC	Add Tags 🐌 3.8 KB				_bin_format": "sec",
Actual Lightcurve data from oda-api	ormat fits, database ?	Actual Lightcurve data from oda-ap			
data_collection = disp.get_product(**par_dict)	>>> out_lc lc_galaxy.output outv >> coda_api.data_products.LightCurveDataProd object at 0x7fbc8a7b2ef0> ['data_unit_list':				<pre>ection = disp.get_product(**par_dict)</pre>
lc = data_collection.spi_acs_lc_0_query.data_unit[1].data	a Ø O C ≅ A ? PrimaryHDU PRIMARY (0,) RINTABLEHEU LC 1200R × 3C	Lightcurbve PNG			_collection.spi_acs_lc_0_query.data_unit[1].data

FAIR Workflows Catalogs, Publishing

Workflow is more than software, it has machine-readable instructions to execute

BO-Crate represents workflow in publishable form, with semantic annotations

Stored in discoverable **workflow catalog:**

We are **connecting tool catalogs** by ingesting tools developed in **©SDSC RenkuLab** and with **MMODA** (AstroORDAS)

Recuperability: need make sure workflow is still alive when it has been published a while ago.

Workflows are then be **embedded** into journal **publications** and published with **DOI** in archives and registries.

Provenance-first INTEGRAL/MMODA paper converted into an example.

Summary

- Modern astronomy (especially multi-messenger) is all about **rapidly growing data** and **reducing the time** of the analysis
- Need intelligent automation to react fast and ensure reuse and reproducibility
- We establish an **ecosystem** centered around MMODA platform, which allows to **crowd-source FAIR workflow** creation
- It's always beneficial to leverage synergies with other projects
- In EuroScienceGateway we integrate existing solutions and workflow catalogs with Galaxy
- Galaxy is a very **flexible**, **well-developed science platform** with exceptional experience, and it is highly beneficial to learn from it
- EuroScienceGateway project will help to see the **future potential of Galaxy platform for astronomy**