

Harnessing the power of Jupyter{Hub,Lab} to
make Jean Zay HPC

resources more accessible
Mahendra PAIPURI
IDRIS-CNRS, Orsay

JupyterHub Architecture
● Modular and extensible
● Proxy: CHP and Traefik
● Authenticators: LDAP, OAuth, SAML,

Kerberos,…
● Spawners: KubeSpawner,

BatchSpawner, DockerSpawner,
SystemdSpawner,…

● Can be used to spawn any arbritrary
web servers not just JupyterLab and
Notebook

JupyterHub Architecture on JZ

Authenticator

● Custom LDAP authenticator tailored for JZ
● Authenticate and authorize users of JZ
● LDAP bind – Authentication
● Verify Client IP address – Authorization
● User specific data like HOME, WORK and SCRATCH directories, active

projects are passed to Spawner
● Eventually move to a SSO solution and use OAuthenticator

Spawner
● Custom WrapSpawner that creates either a SSHSpawner or

SlurmSpawner at runtime
● SSHSpawner → Login node,

SlurmSpawner → Slurm nodes
● Privilege escalation to spawn on behalf of users

➢ Using sudo -u <user> <cmd>
➢ Using a wrapper with cap_setuid (Linux capabilities)
➢ One shot SSH certificates with short validity

● Current deployment supports all three methods

JZ WrapSpawner

SSHSpawner Workflow

SlurmSpawner Workflow

Spawn arbitrary web apps
● Objective is to spawn arbitrary web apps (such as RStudio,

Tensorboard, etc.) alongside JupyterLab/Notebook and provide

authenticated web access to them.

● Use Jupyter server, which is backbone server for both JupyterLab and Notebook, to proxy the
requests to the arbitrary web app.

● jupyter-server-proxy accomplishes it by proxying both HTTP and WS traffic. Supports UNIX
sockets as well.

● Caveat is jupyter-server-proxy can proxy absolutely any web app that is running on any TCP port.

● A fork is maintained for Jean Zay JupyterHub deployment that adds important functionalities like
life cycle management of web apps, security checks, etc.

Spawn arbitrary web apps

Spawn arbitrary web apps

Spawn arbitrary web apps

bubblewrap and
slirp4netns are used to
create network ns and
TAP device

JupyterLab extensions
● nb-jeanzay-conda-kernels discover kernels in Jean Zay environment

modules automatically and make them available to users via
JupyterLab.

● Real time CPU and GPU energy usage and CO2 emissions.
eCO2mix from RTE is used to estimate CO2 emissions.

● Users can interact with environment modules from JupyterLab.

● Several web apps like VSCode, Tensorboard, MLFlow, noVNC Desktop,
Cylc UI, NerfStudio are supported.

● Dask and Ray dashboards are supported.

● Launcher is customized for Jean Zay.

https://gitlab.com/idris-cnrs/jupyter/jupyterlab/nb-jeanzay-conda-kernels
https://www.rte-france.com/en/eco2mix/co2-emissions
https://www.rte-france.com/en/eco2mix/co2-emissions

Deployment details
● Deployment via Ansible playbook.

● A playbook is being maintained and tested for Ubuntu 22, Debian 11,

CentOS 8 and Rocky 8 in CI.

● Jupyter{Hub,Lab} stack is installed within conda environment on a network file system.

● PostgreSQL DB is used.

● Run JupyterHub and CHP separately and use systemd for supervision.

● Hardened nginx systemd unit to partially “containerize” the process.

● Monitoring stack based on Prometheus, Grafana Loki and Grafana.

● Migrate to Traefik proxy as there is a known memory leak in CHP.

● Idle server culler service to terminate inactive servers.

https://github.com/jupyterhub/configurable-http-proxy/issues/388
https://github.com/jupyterhub/jupyterhub-idle-culler

Demo time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

